Characterization Studies on Li-Metal Anode and High-Ni Cathode Materials

Peter Khalifah and Xiao-Qing Yang Brookhaven National Laboratory (BNL)

2020 DOE Vehicle Technologies Office Annual Merit Review

Washington, DC, June 1-4, 2020

BAT367

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 10/01/2016
- Project end date: 9/30/2021
- Percent complete: 70 percent

Budget

Total project funding: DOE share \$50M

Funding received in FY 2019: \$10M

Funding for FY 2020: \$10M

Barriers addressed

- Develop Li-ion batteries using Li metal anodes with a cell-level energy density of 500 Wh/kg
- Achieve lifetime of 1,000 cycles with the technology
- Mitigate safety issues associated with Li metal

Collaborators

- Argonne National Laboratory (ANL)
- Idaho National Laboratory (INL)
- Pacific Northwestern National Laboratory (PNNL)
- Stanford Linear Accelerator Center (SLAC)
- Binghamton University
- University of Texas Austin
- University of Maryland College Park
- University of California San Diego (UCSD)

Relevance and Project Objectives

- Accelerate development of 500 Wh/kg batteries with Li metal anodes
- Develop and deploy characterization techniques to:
 - 1. Select and optimize high energy density cathode materials
 - 2. Diagnose failure mechanisms with spatial and temporal resolution
 - 3. Parameterize & validate whole-cell models, leading to improved cell designs
- Emphasis on synchrotron diffraction and spectroscopy methods
 - Done both locally at BNL and externally at other DOE facilities

Milestones

Month/Year	Milestones
Dec/2019	Complete x-ray pair distribution function (PDF) studies on high sulfur loading S cathode material synthesized by carbonizing the oxygen-rich PTCDA and nitrogen-rich PAN with sulfur to understand the mechanism of high S loading and cycleability of this new material. (Q1, December 2019) → Completed.
Mar/2020	Complete transmission x-ray microscopy (TXM) 3D tomography studies of high Ni content cathode material (LiNi $_{0.94}$ Co $_{0.06}$ O $_2$ NC9406) after multiple cycles to different charge limits. Comparing the results with those from LiNi $_{0.94}$ Co $_{0.06}$ O $_2$ NC9406 to diagnose the failure mechanism of this material. (Q2, March 2020) \hookrightarrow Completed.
Jun/2020	Complete transmission x-ray microscopy (TXM) 3D tomography studies of Al-doped high Ni content cathode material (LiNi _{0.92} Co _{0.06} Al _{0.02} O ₂ NCA920602) after multiple cycles to different charge limits. Comparing the results with those from LiNi _{0.94} Co _{0.06} O ₂ NC9406 to understand the effects of Al doping. (Q3, June 2020) \hookrightarrow On schedule.
Sep/2020	Complete studies of spatially-resolved X-ray diffraction studies of Li-S pouch cell in order to understand the inhomogeneity of electrochemical reactions and its effects on fade and failure mechanism of Li-S cells during cycling. (Q4, September 2020) → On schedule.

Approach – methods

Develop and apply multi-scale and multi-dimensional techniques

Multi-scale:

- Apply both bulk (XRD, PDF) and single-particle (TEM, TXM) probes
- Study both the <u>average structure</u> and <u>local structure</u> of cathode materials

Multi-dimensional:

- 1D depth-profiling thick film operando studies of time-dependent SOC
- 2D lateral mapping film / full pouch cell studies done ex situ or in operando
- 3D tomographic studies of single particles done ex situ

Approach – goals

1. Select and optimize materials

- 1a. High-precision quantification of anti-site defects in NMCs
- 1b. PDF studies of carbon-sulfur hybrids

2. Diagnose failure mechanisms with spatial and temporal resolution

- 2a. Pouch cell failure probed through lateral mapping studies
- 2b. Particle-level failure probed through TXM tomography
- 2c. Material-level failure probed using super-resolution electron microscopy

3. Parameterize and validate whole-cell models

3a. Depth profiling studies of thick cathode films

Technical accomplishments – highlights

- XRD quantification of defects in NMC cathodes with unprecedented accuracy
- Demonstrated ability of PDF methods to resolve non-crystalline S coordination
- Developed high-throughput lateral mapping to study pouch cell failure signatures
- 3D SOC maps of NMC single particles to understand failure mechanism
- Used ML to rapidly identify defects in EM images with exceptional sensitivity
- Measured and modeled SOC gradients in thick NMC films

1a. Precise XRD quantification of NMC defects

- Developed and validated new diffraction methods for defect quantification at ppt levels
 - Accuracy unprecedented in history of powder diffraction; exceeds sensitivity of chemical analysis
- Enabled calculation of defect formation energy and prediction of defect concentrations
 - Defect formation shown to be driven not just by Ni²⁺ size, but by TM layer expansion
- Now possible to determine optimal defect concentration for cycling performance

1b. Structural insights for carbon-sulfur hybrids

- Investigated polymeric carbon-oxygen-sulfur hybrids as alternatives to Li-S
- Bonding within hybrids was investigated by xPDF after synthesis and during cycling
 - Can independently resolve and characterize different sulfur bonds (S-O, S-C, and S-S)
- Inclusion of oxygen enhanced bonding of sulfides relative to carbon-only systems

2a. NMC pouch cell failure – diffraction mapping studies

- Developed high-energy lateral mapping techniques for studying pouch cell inhomogeneity
 - Each map generated from the refinement of >5,000 high-energy powder diffraction patterns
- Applied to study cathode inhomogeneity in end-of-life NMC622/Li cell (after ~200 cycles)
- Observe "hot spots" in discharged EOL cell containing NMC with two distinct SOCs
 - Behavior of hot spots provides insights into the cell failure mechanism

2a. (continued) XAS and XRF lateral mapping of Li-S cell

- Studied S speciation in Li-S cathode films with tender energy spectroscopy (TES)
- Sensitive to both crystalline and non-crystalline S species
 - Addresses the gap in sensitivity in conventional diffraction methods
- Observe macroscopic inhomogeneity in discharged Li-S film
 - Still working to resolve origin of this behavior

2b. Failure probed at single-particle level

- Charging NMC622 to higher voltages leads to more rapid failure what is origin?
- SOC inhomogeneity in single particles probed by TXM spectro-microscopy at SSRL
- Large differences in SOC after charge to 4.9V produces strain that causes cracking
 - Data and modeling suggests that strain is mitigated by hollow particles; lower cutoff voltage

2c. Super-resolution EM imaging enabled by AI/ML

- Used BNL's GPU clusters to train deep convolutional neural networks to find atoms
 - Can provide sensitivity to atomic sites exceeding that of human eye
 - Enables low-dose imaging, allowing samples to be studied with minimal beam damage
- Starting to apply technique to track site mixing in high-Ni NMC compounds

3a. Thick electrodes studied by depth profiling

- Thick electrodes enable higher energy densities, but have larger SOC inhomogeneity
- Depth-dependent SOC determined through operando cycling measurements
 - Synchrotron data enable excellent spatial (10 20 μm) and temporal (5 min) resolution
- Observe a variety of unexpected behavior (e.g., SOC increasing during discharge)
 - Can these phenomena be captured by cell models? (w/ V. Submramanian, UT-Austin)

3a. Thick electrodes studied by depth profiling

- Parameterizing models that can reproduce observed behavior
 - Parameterizing based on complex multi-dimensional data, not just on simple voltage curve
 - Models that can fit time- and depth-dependent SOC will necessarily be predictive
- Models will be utilized to design thick electrode cells with optimal performance
 - Goal of maximizing delivered capacity and rate performance; predictions can be validated

Response to last year's reviewer comments

This project was not reviewed last year

Collaborations with other institutions

- ANL (Shin)
 - High-Ni NMC materials with concentration gradients
- Binghamton University (M.S. Whittingham)
 - High-Ni NMC materials and analysis
- INL (E. Dufek, B. Li)
 - Electrochemical evaluation of cells; well-characterized samples for ex situ and operando studies
- PNNL (J. Zhang, J. Xiao, D. Lu)
 - High-Ni NMC samples and analysis, NMC cathode films and pouch cells, Li-S electrodes and cells
- SLAC (Y. Liu)
 - TXM studies on high-Ni NMC
- UT-Austin (A. Manithram)
 - High-Ni NMC materials and analysis
- U. Maryland College Park (C. Wang)
 - High sulfur loading S cathode material synthesized by carbonizing oxygen-rich PTCDA and nitrogen-rich PAN with sulfur (SPAN)
- UCSD (P. Liu, Y.S. Meng)
 - High-Ni NMC materials and analysis, thick films for depth profiling analysis, first-cycle capacity loss studies

Remaining challenges and barriers

N/A

Proposed future research

- Extend lateral mapping and depth profiling methods to Li-S cells
- Resolve effects of annealing on NMC anti-site defect concentrations
- Quantify NMC local distortions and their effect on performance
- Investigate failure mechanisms for very Ni-rich NC and NCA samples
- Structural transitions and degradation pathways of very Ni-rich phases

Summary

- Advanced characterization methods designed to meet B500 needs
 - 1. Material selection 2. Failure mechanisms 3. Predictive whole-cell models
- Able to follow synthesis- and cycling-induced changes on many levels
 - Material, particle, electrode, and whole cell
 - Enabling fitting & modeling that can provide mechanistic & predictive insights
- Exceptional sensitivity achieved with novel approaches
 - Powder diffraction quantification of defects with unprecedent sensitivity
 - Used NNs to greatly enhanced sensitivity of EM to atomic defects
 - Elucidating both vertical and lateral inhomogeneity in NMC and sulfur cathodes

Technical back-up slides

Expected influence of defects on NMC properties

- In ideal NMC structure, ionic transport is 2D and electronic transport is 2D
 - Increasing dimensionality should improve performance
- Addition of paired anti-site defects (PAS) enables 3D ionic and electronic transport
 - Small amounts of PAS defects (2 5%) present in typical NMCs
 - Large amounts of PAS defects (>10%) known to adversely affect performance
 - For a given composition, optimal PAS defect concentration is unknown but can now be studied

